Characterization of four variant forms of human propionyl-CoA carboxylase expressed in Escherichia coli.

نویسندگان

  • Hua Jiang
  • K Sudhindra Rao
  • Vivien C Yee
  • Jan P Kraus
چکیده

Propionyl-CoA carboxylase (PCC) is a biotin-dependent mitochondrial enzyme that catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA. PCC consists of two heterologous subunits, alpha PCC and beta PCC, which are encoded by the nuclear PCCA and PCCB genes, respectively. Deficiency of PCC results in a metabolic disorder, propionic acidemia, which is sufficiently severe to cause neonatal death. We have purified three PCCs containing pathogenic mutations in the beta subunit (R165W, E168K, and R410W) and one PCCB polymorphism (A497V) to homogeneity to elucidate the potential structural and functional effects of these substitutions. We observed no significant difference in Km values for propionyl-CoA between wild-type and the variant enzymes, which indicated that these substitutions had no effect on the affinity of the enzyme for this substrate. Furthermore, the kinetic studies indicated that mutation R410W was not involved in propionyl-CoA binding in contrast to a previous report. The three mutant PCCs had half the catalytic efficiency of wild-type PCC as judged by the kcat/Km ratios. No significant differences have been observed in molecular mass or secondary structure among these enzymes. However, the variant PCCs were less thermostable than the wild-type. Following incubation at 47 degrees C, blue native-PAGE revealed a lower oligomeric form (alpha2beta2) in the three mutants not detectable in wild-type and the polymorphism. Interestingly, the lower oligomeric form was also observed in the corresponding crude Escherichia coli extracts. Our biochemical data and the structural analysis using a beta PCC homology model indicate that the pathogenic nature of these mutations is more likely to be due to a lack of assembly rather than disruption of catalysis. The strong favorable effect of the co-expressed chaperone proteins on PCC folding, assembly, and activity suggest that propionic acidemia may be amenable to chaperone therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaperonin-mediated assembly of wild-type and mutant subunits of human propionyl-CoA carboxylase expressed in Escherichia coli.

We developed a bacterial expression system for the human alpha and beta cDNAs of propionyl-CoA carboxylase (PCC). These cDNAs (less the putative mitochondrial matrix targeting presequences) were co-expressed in Escherichia coli on one plasmid vector with each cDNA having its own IPTG-inducible promoter. Only negligible amounts of active PCC were measured despite the presence of both alpha and b...

متن کامل

PURIFICATION AND CHARACTERIZATION OF THE CLONED HUMAN GM-CSF GENE EXPRESSED IN ESCHERICHIA COLI

The human granulocyte-macrophage colony stimulation factor (hGM-CSF) gene was cloned in the pET 23a( +) expression vector under the control of strong bacteriophage T7 transcription and translation signals. The hGM-CSF gene was transferred into E. coli strainBL21 (DE3)pLysS andIPTG was used for induction of GM-CSF gene. Production of the target protein was obtained as revealed by ELISA and ...

متن کامل

Biochemical characterization of a Rhizobium etli monovalent cation-stimulated acyl-coenzyme A carboxylase with a high substrate specificity constant for propionyl-coenzyme A.

Biotin has a profound effect on the metabolism of rhizobia. It is reported here that the activities of the biotin-dependent enzymes acetyl-coenzyme A carboxylase (ACC; EC 6.4.1.2) and propionyl-coenzyme A carboxylase (PCC; EC 6.4.1.3) are present in all species of the five genera comprising the Rhizobiaceae which were examined. Evidence is presented that the ACC and PCC activities detectable in...

متن کامل

Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase.

Biotin biosynthesis and retention in Escherichia coli is regulated by the multifunctional protein, BirA. The protein acts as both the transcriptional repressor of the biotin biosynthetic operon and as a ligase for covalent attachment of biotin to a unique lysine residue of the acetyl-CoA carboxylase. Biotinyl-5'-AMP is the activated intermediate for the ligase reaction and the allosteric effect...

متن کامل

Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.

We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 30  شماره 

صفحات  -

تاریخ انتشار 2005